Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
FEBS Lett ; 598(8): 875-888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553946

RESUMO

Mammalian Ca2+-dependent Slo K+ channels can stably associate with auxiliary γ subunits which fundamentally alter their behavior. By a so far unknown mechanism, the four γ subunits reduce the need for voltage-dependent activation and, thereby, allow Slo to open independently of an action potential. Here, using cryo-EM, we reveal how the transmembrane helix of γ1/LRRC26 binds and presumably stabilizes the activated voltage-sensor domain of Slo1. The activation is further enhanced by an intracellular polybasic stretch which locally changes the charge gradient across the membrane. Our data provide a possible explanation for Slo1 regulation by the four γ subunits and also their different activation efficiencies. This suggests a novel activation mechanism of voltage-gated ion channels by auxiliary subunits.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Subunidades Proteicas , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Animais , Ativação do Canal Iônico , Modelos Moleculares , Células HEK293 , Ligação Proteica , Domínios Proteicos
2.
J Mol Histol ; 55(1): 83-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165571

RESUMO

Acquired drug resistance is a main reason for limiting the application of sorafenib in HCC treatment. This study aimed to explore the role and mechanisms of a novel long non-coding RNA (lncRNA), lnc-TSI, in sorafenib resistance of HCC. The interaction between lnc-TSI and miR-4726-5p, and miR-4726-5p and KCNMA1 were predicted using bioinformatic tools. Expression of the molecules in the lnc-TSI/miR-4726-5p/KCNMA1 axis in clinical samples and cell lines, as well as the sorafenib resistant HCC cell lines, was determined using qRT-PCR or western blotting. Expressions of lnc-TSI, miR-4726-5p, and KCNMA1 were manipulated in HepG2 and Huh7 cells through plasmid transfection or lentivirus infection. The CCK-8, flow cytometry, and Tunel assays were employed to determine the role of this axis on sorafenib resistance of HCC. A xenograft model was established using sorafenib-resistant HepG2 and Huh7 cells followed by in vivo sorafenib treatments to confirm the in vitro findings. Lnc-TSI and KCNMA1 expressions were significantly downregulated in HCC clinical samples and cell lines, especially in sorafenib resistance ones, while mi-4726-5p presented a reversed expression pattern. Lnc-TSI interacted with miR-4726-5p, and Lnc-TSI acts as a ceRNA via sponging miR-4726-5p in HCC cells. Overexpression of lnc-TSI and KCNMA1 promoted apoptosis and decreased cell viability of sorafenib-treated HCC cells, thus alleviated sorafenib resistance. miR-4726-5p mimic reversed the KCNMA1-mediated sorafenib sensitivity-promoting effect, while additional overexpression of lnc-TSI reversed the effect of miR-4726-5p. In vivo analysis also showed that overexpression of ln-TSI diminished sorafenib resistance in mice inoculated with sorafenib-resistant HCC cells via increasing KCNMA1 expression and decreasing miR-4726-5p expression. The lnc-TSI/miR-4726-5p/KCNMA1 axis plays a critical role in regulating the resistance of HCC to sorafenib, and might serve as a therapeutic target to manage sorafenib resistance of HCC in clinic.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo
3.
Annu Rev Physiol ; 86: 277-300, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37906945

RESUMO

Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.


Assuntos
Canalopatias , Coreia , Epilepsia , Animais , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canalopatias/genética , Epilepsia/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
4.
Nihon Yakurigaku Zasshi ; 158(6): 478-482, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37914328

RESUMO

Ca2+-activated K+ channels play a critical role in the proliferation, apoptosis, migration, adhesion, and metastasis of various types of cancer cells by controlling Ca2+ signaling and cell volumes. Their amplification correlated with a high tumor stage and poor prognosis and has the potential as tumor grade-associated markers. The amplification of the large-conductance Ca2+-activated K+ channel, KCa1.1 is observed in many types of cancers such as breast, colon, ovarian, prostate, pancreatic cancers and gliomas. The hypoxic tumor microenvironment (TME) promotes the anti-cancer drug resistance and stemness of solid tumors. Three-dimensional (3D) in vitro cancer spheroid models mimic the TME of human solid tumors, and are efficient tools for investigating chemoresistance and stemness. We here introduce the mechanisms underlying the post-translational modification of KCa1.1 and the overcome of chemo- and antiandrogen-resistance by KCa1.1 inhibition in 3D cancer spheroid models. KCa1.1 is a key modulator of chemoresistance in KCa1.1-positive cancer cells, indicating that targeting KCa1.1 is a promising therapeutic strategy for overcoming chemoresistance.


Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Neoplasias , Masculino , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Resistencia a Medicamentos Antineoplásicos , Processamento de Proteína Pós-Traducional , Microambiente Tumoral
5.
J Gen Physiol ; 155(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728576

RESUMO

KCNMA1 encodes the voltage- and calcium-activated K+ (BK) channel, which regulates suprachiasmatic nucleus (SCN) neuronal firing and circadian behavioral rhythms. Gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity disrupt circadian behavior, but the effect of human disease-associated KCNMA1 channelopathy variants has not been studied on clock function. Here, we assess circadian behavior in two GOF and one LOF mouse lines. Heterozygous Kcnma1N999S/WT and homozygous Kcnma1D434G/D434G mice are validated as GOF models of paroxysmal dyskinesia (PNKD3), but whether circadian rhythm is affected in this hypokinetic locomotor disorder is unknown. Conversely, homozygous LOF Kcnma1H444Q/H444Q mice do not demonstrate PNKD3. We assessed circadian behavior by locomotor wheel running activity. All three mouse models were rhythmic, but Kcnma1N999S/WT and Kcnma1D434G/D434G showed reduced circadian amplitude and decreased wheel activity, corroborating prior studies focused on acute motor coordination. In addition, Kcnma1D434G/D434G mice had a small decrease in period. However, the phase-shifting sensitivity for both GOF mouse lines was abnormal. Both Kcnma1N999S/WT and Kcnma1D434G/D434G mice displayed increased responses to light pulses and took fewer days to re-entrain to a new light:dark cycle. In contrast, the LOF Kcnma1H444Q/H444Q mice showed no difference in any of the circadian parameters tested. The enhanced sensitivity to phase-shifting stimuli in Kcnma1N999S/WT and Kcnma1D434G/D434G mice was similar to other Kcnma1 GOF mice. Together with previous studies, these results suggest that increasing BK channel activity decreases circadian clock robustness, without rhythm ablation.


Assuntos
Canalopatias , Relógios Circadianos , Humanos , Animais , Camundongos , Relógios Circadianos/genética , Atividade Motora , Cálcio , Modelos Animais de Doenças , Canais de Potássio Ativados por Cálcio de Condutância Alta , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
6.
J Biol Chem ; 299(8): 104992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392848

RESUMO

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Assuntos
Halotano , Resposta ao Choque Térmico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Hipertermia Maligna , Animais , Camundongos , Cálcio/metabolismo , Halotano/farmacologia , Resposta ao Choque Térmico/genética , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(3): 349-359, 2023 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-37087578

RESUMO

OBJECTIVE: To explore the association of KCNMA1 gene methylation levels in peripheral blood with lung cancer. METHODS: The methylation levels of 4 CpG sites in KCNMA1 gene were quantitatively detected in 285 patients with lung cancer, 186 age- and sex-matched patients with benign pulmonary nodules and 278 matched healthy control subjects using mass spectrometry (MALDI-TOF-MS). The association of KCNMA1 methylation levels with lung cancer was analyzed using logistic regression models adjusted for covariates. The KCNMA1 methylation levels in different subgroups of lung cancer patients were compared using Mann-Whitney U test. RESULTS: In subjects over 55 years and in female subjects, the highest quartile (Q4) vs the lowest quartile (Q1) of KCNMA1_CpG_5 methylation levels were significantly correlated with lung cancer (for subjects over 55 years: OR=2.60, 95% CI: 1.25-5.41, P=0.011; for female subjects: OR=2.09, 95% CI: 1.03?4.26, P=0.042). From Q2 to Q4 of KCNMA1_CpG_5 methylation levels, their correlation with lung cancer became gradually stronger (P=0.003 and 0.038, respectively). In male subjects, the OR of Q4 of KCNMA1_CpG_5 methylation levels was 0.35 in patients with lung cancer as compared with patients with benign nodules (95% CI: 0.16-0.79, P=0.012). KCNMA1_CpG_3 methylation level was significantly lower in invasive adenocarcinoma than in noninvasive adenocarcinoma (P=0.028), and that of KCNMA1_CpG_1 was significantly higher in patients with larger tumors (T2-4) than in those with smaller tumors (T1) (P=0.021). CONCLUSION: The change of peripheral blood KCNMA1 methylation level is correlated with the occurrence and development of lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Metilação de DNA , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Feminino , Humanos , Masculino , Adenocarcinoma/genética , Estudos de Casos e Controles , Ilhas de CpG , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética
8.
FASEB J ; 37(4): e22866, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929614

RESUMO

Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.


Assuntos
Diabetes Mellitus Experimental , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Homeostase
9.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995317

RESUMO

The molecular basis of a severe developmental and neurological disorder associated with a de novo G375R variant of the tetrameric BK channel is unknown. Here, we address this question by recording from single BK channels expressed to mimic a G375R mutation heterozygous with a WT allele. Five different types of functional BK channels were expressed: 3% were consistent with WT, 12% with homotetrameric mutant, and 85% with three different types of hybrid (heterotetrameric) channels assembled from both mutant and WT subunits. All channel types except WT showed a marked gain-of-function in voltage activation and a smaller decrease-of-function in single-channel conductance, with both changes in function becoming more pronounced as the number of mutant subunits per tetrameric channel increased. The net cellular response from the five different types of channels comprising the molecular phenotype was a shift of -120 mV in the voltage required to activate half of the maximal current through BK channels, giving a net gain-of-function. The WT and homotetrameric mutant channels in the molecular phenotype were consistent with genetic codominance as each displayed properties of a channel arising from only one of the two alleles. The three types of hybrid channels in the molecular phenotype were consistent with partial dominance as their properties were intermediate between those of mutant and WT channels. A model in which BK channels randomly assemble from mutant and WT subunits, with each subunit contributing increments of activation and conductance, approximated the molecular phenotype of the heterozygous G375R mutation.


Assuntos
Canalopatias , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Mutação , Fenótipo
10.
Adv Exp Med Biol ; 1422: 217-243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988883

RESUMO

Ca2+/voltage-gated, large conductance K+ channels (BKCa) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (ß and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP2 and cholesterol can modulate BKCa activity independently of downstream signaling, yet activating Ca2+i levels and regulatory subunits control ligand action. At physiological Ca2+i and voltages, cholesterol and PIP2 reduce and increase slo1 channel activity, respectively. Moreover, slo1 proteins provide sites that seem to recognize cholesterol and PIP2: seven CRAC motifs in the slo1 cytosolic tail and a string of positively charged residues (Arg329, Lys330, Lys331) immediately after S6, respectively. A model that could explain the modulation of BKCa activity by cholesterol and/or PIP2 is hypothesized. The roles of additional sites, whether in slo1 or BKCa regulatory subunits, for PIP2 and/or cholesterol to modulate BKCa function are also discussed.


Assuntos
Ativação do Canal Iônico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Citosol/metabolismo , Ativação do Canal Iônico/fisiologia , Transdução de Sinais , Colesterol/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/química
11.
Cell Mol Life Sci ; 80(3): 61, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763212

RESUMO

BRAF mutations have been found in gliomas which exhibit abnormal electrophysiological activities, implying their potential links with the ion channel functions. In this study, we identified the Drosophila potassium channel, Slowpoke (Slo), the ortholog of human KCNMA1, as a critical factor involved in dRafGOF glioma progression. Slo was upregulated in dRafGOF glioma. Knockdown of slo led to decreases in dRafGOF levels, glioma cell proliferation, and tumor-related phenotypes. Overexpression of slo in glial cells elevated dRaf expression and promoted cell proliferation. Similar mutual regulations of p-BRAF and KCNMA1 levels were then recapitulated in human glioma cells with the BRAF mutation. Elevated p-BRAF and KCNMA1 were also observed in HEK293T cells upon the treatment of 20 mM KCl, which causes membrane depolarization. Knockdown KCNMA1 in these cells led to a further decrease in cell viability. Based on these results, we conclude that the levels of p-BRAF and KCNMA1 are co-dependent and mutually regulated. We propose that, in depolarized glioma cells with BRAF mutations, high KCNMA1 levels act to repolarize membrane potential and facilitate cell growth. Our study provides a new strategy to antagonize the progression of gliomas as induced by BRAF mutations.


Assuntos
Glioma , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Proteínas Proto-Oncogênicas B-raf , Animais , Humanos , Drosophila/metabolismo , Glioma/genética , Células HEK293 , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(12): 1-11, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514218

RESUMO

The large-conductance calcium-activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture, and abnormal expression or dysfunction of this channel is linked to many vascular diseases. Vascular remodelling is the early pathological basis of severe vascular diseases. Delaying the progression of vascular remodelling can reduce cardiovascular events, but the pathogenesis remains unclear. To clarify the role of BK channels in vascular remodelling, we use rats with BK channel α subunit knockout (BK α ‒/‒). The results show that BK α ‒/‒ rats have smaller inner and outer diameters, thickened aortic walls, increased fibrosis, and disordered elastic fibers of the aortas compared with WT rats. When the expression and function of BK α are inhibited in human umbilical arterial smooth muscle cells (HUASMCs), the expressions of matrix metalloproteinase 2 (MMP2), MMP9, and interleukin-6 are enhanced, while the expressions of smooth muscle cell contractile phenotype proteins are reduced. RNA sequencing, bioinformatics analysis and qPCR verification show that C1q/tumor necrosis factor-related protein 7 ( CTRP7) is the downstream target gene. Furthermore, except for that of MMPs, a similar pattern of IL-6, smooth muscle cell contractile phenotype proteins expression trend is observed after CTRP7 knockdown. Moreover, knockdown of both BK α and CTRP7 in HUASMCs activates PI3K/Akt signaling. Additionally, CTRP7 is expressed in vascular smooth muscle cells (VSMCs), and BK α deficiency activates the PI3K/Akt pathway by reducing CTRP7 level. Therefore, we first show that BK channel deficiency leads to vascular remodelling. The BK channel and CTRP7 may serve as potential targets for the treatment of cardiovascular diseases.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Doenças Vasculares , Animais , Humanos , Ratos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Doenças Vasculares/metabolismo , Remodelação Vascular/genética
13.
Neurosciences (Riyadh) ; 27(4): 275-278, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36252966

RESUMO

Epilepsy, one of the most prevalent chronic neurological diseases, can cause severe morbidity as well as mortality. A mutation of the KCNMA1 gene results in a rare genetic disease that causes epilepsy as its core presentation. Both neurological and non-neurological manifestations have been reported in patients with KCNMA1 gene mutation. We are reporting a KCNMA1 gene variant referred to as c.2369C>T (p. Pro790Leu), which encodes the subunit of alpha of calcium-sensitive potassium channels, which causes epilepsy but not dyskinesia in a young Saudi female who is the daughter of consanguineous parents. Our case shows that calcium-sensitive potassium channels can cause an isolated generalized epilepsy as reported previously in a single case. Moreover, this case aids in delineating the clinical and structural picture and the treatment of the KCNMA1 gene mutation in patients.


Assuntos
Epilepsia , Estado Epiléptico , Estimulação do Nervo Vago , Cálcio , Epilepsia/genética , Feminino , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Estado Epiléptico/genética , Estado Epiléptico/terapia
14.
Biochem J ; 479(15): 1609-1619, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851603

RESUMO

Human BK channels are large voltage and Ca2+-activated K+ channels, involved in several important functions within the body. The core channel is a tetramer of α subunits, and its function is modulated by the presence of ß and γ accessory subunits. BK channels composed of α subunits, as well as BK channels composed of α and ß1 subunits, were successfully solubilised from HEK cells with styrene maleic acid (SMA) polymer and purified by nickel affinity chromatography. Native SMA-PAGE analysis of the purified proteins showed the α subunits were extracted as a tetramer. In the presence of ß1 subunits, they were co-extracted with the α subunits as a heteromeric complex. Purified SMA lipid particles (SMALPs) containing BK channel could be inserted into planar lipid bilayers (PLB) and single channel currents recorded, showing a high conductance (≈260 pS), as expected. The open probability was increased in the presence of co-purified ß1 subunits. However, voltage-dependent gating of the channel was restricted. In conclusion, we have demonstrated that SMA can be used to effectively extract and purify large, complex, human ion channels, from low expressing sources. That these large channels can be incorporated into PLB from SMALPs and display voltage-dependent channel activity. However, the SMA appears to reduce the voltage dependent gating of the channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo
15.
Elife ; 112022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819138

RESUMO

KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.


So far, only 70 patients around the world have been diagnosed with a newly identified rare syndrome known as KCNMA1-linked channelopathy. The condition is characterised by seizures and abnormal movements which include frequent 'drop attacks', a sudden and debilitating loss of muscle control that causes patients to fall without warning. The disease is associated with mutations in the gene for KCNMA1, a member of a class of proteins important for controlling nerve cell activity and brain function. However, due to the limited number of people affected by the condition, it is difficult to link a particular mutation to the observed symptoms; the basis for the drop attacks therefore remains unknown. Park et al. set out to 'model' KCNMA1-linked channelopathy in the laboratory, in order to determine which mutations in the KCNMA1 gene caused these symptoms. Three groups of mice were each genetically engineered to carry either one of the two most common mutations in the gene for KCNMA1, or a very rare mutation associated with the movement symptoms. Behavioural experiments and studies of nerve cell activity revealed that the mice carrying mutations that made the KCNMA1 protein more active developed seizures more easily and became immobilized, showing the mouse version of drop attacks. Giving these mice the drug dextroamphetamine, which works in some human patients, stopped the immobilizing attacks altogether. These results show for the first time which specific genetic changes cause the main symptoms of KCNMA1-linked channelopathy. Park et al. hope that this knowledge will deepen our understanding of this disease and help develop better treatments.


Assuntos
Canalopatias , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Animais , Canalopatias/genética , Coreia , Modelos Animais de Doenças , Epilepsia Generalizada , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Transgênicos , Convulsões/genética
17.
J Med Case Rep ; 16(1): 180, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35509069

RESUMO

BACKGROUND: Mutations in the genes encoding the large-conductance calcium-activated potassium channel, especially KCNMA1 encoding its α-subunit, have been linked to several neurological features, including intellectual disability or autism. Associated with neurodevelopmental phenotypes, sensory function disturbances are considered to be important clinical features contributing to a variety of behavioral impairments. Large-conductance calcium-activated potassium channels are important in regulating neurotransmission in sensory circuits, including visual pathways. Deficits in visual function can contribute substantially to poor quality of life, while therapeutic approaches aimed at addressing such visual deficits represent opportunities to improve neurocognitive and neurobehavioral outcomes. CASE PRESENTATION: We describe the case of a 25-year-old Caucasian male with autism spectrum disorder and severe intellectual disability presenting large-conductance calcium-activated potassium channel haploinsufficiency due to a de novo balanced translocation (46, XY, t [9; 10] [q23;q22]) disrupting the KCNMA1 gene. The visual processing pathway of the subject was evaluated using both electroretinography and visual contrast sensitivity, indicating that both retinal bipolar cell function and contrast discrimination performance were reduced by approximately 60% compared with normative control values. These findings imply a direct link between KCNMA1 gene disruption and visual dysfunction in humans. In addition, the subject reported photophobia but did not exhibit strabismus, nystagmus, or other visual findings on physical examination. CONCLUSIONS: This case study of a subject with large-conductance calcium-activated potassium channel haploinsufficiency and photophobia revealed a visual pathway deficit at least at the retinal level, with diminished retinal light capture likely due to bipolar cell dysfunction and an associated loss of contrast sensitivity. The data suggest that large-conductance calcium-activated potassium channels play an important role in the normal functioning of the visual pathway in humans, and that their disruption may play a role in visual and other sensory system symptomatology in large-conductance calcium-activated potassium channelopathies or conditions where disruption of large-conductance calcium-activated potassium channel function is a relevant feature of the pathophysiology, such as fragile X syndrome. This work suggests that the combined use of physiological (electroretinography) and functional (contrast sensitivity) approaches may have utility as a biomarker strategy for identifying and characterizing visual processing deficits in individuals with large-conductance calcium-activated potassium channelopathy. Trial registration ID-RCB number 2019-A01015-52, registered 17/05/2019.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Cálcio , Haploinsuficiência , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Fotofobia , Potássio , Qualidade de Vida , Órgãos dos Sentidos
18.
Acta Physiol (Oxf) ; 235(1): e13800, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156297

RESUMO

AIM: Loss-of-function KCNMA1 variants cause Liang-Wang syndrome (MIM #618729), a newly identified multiple malformation syndrome with a broad spectrum of developmental and neurological phenotypes. However, the full spectrum of clinical features and underlying pathogenic mechanisms need full elucidation. METHODS: Exome sequencing was used to identify pathogenic variants. Patch-clamp recordings were performed to access the effects of KCNMA1 variants on BK channels. Total and membrane protein expression levels of BK channels were characterized using Western blotting. RESULTS: We report identification and functional characterization of two new de novo loss-of-function KCNMA1 variants p.(A172T) and p.(A314T) with characteristics of Liang-Wang syndrome. Variant p.(A172T) is associated with developmental delay, cognitive impairment and ataxia. Mechanistically, p.(A172T) abolishes BK potassium current, inhibits Mg2+ -dependent gating, but shifts conductance-voltage (G-V) curves to more positive potentials when complexed with WT channels. Variant p.(A314T) is associated with developmental delay, intellectual disability, cognitive impairment, mild ataxia and generalized epilepsy; suppresses BK current amplitude; and shifts G-V curves to more positive potentials when expressed with WT channels. In addition, two new patients with previously reported gain-of-function variants p.(N536H) and p.(N995S) are found to show epilepsy and paroxysmal dyskinesia as reported previously, but also exhibit additional symptoms of cognitive impairment and dysmorphic features. Furthermore, variants p.(A314T) and p.(N536H) reduced total and membrane levels of BK proteins. CONCLUSION: Our findings identified two new loss-of-function mutations of KCNMA1 associated with Liang-Wang syndrome, expanded the spectrum of clinical features associated with gain-of-function KCNMA1 variants and emphasized the overlapping features shared by gain-of-function and loss-of-function mutations.


Assuntos
Epilepsia , Deficiência Intelectual , Ataxia/genética , Epilepsia/genética , Epilepsia/patologia , Humanos , Deficiência Intelectual/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Fenótipo
20.
Brain Dev ; 44(2): 173-177, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34674900

RESUMO

BACK GROUND: Polymicrogyria is a malformation of cortical development with overfolding of the cerebral cortex and abnormal cortical layering. Polymicrogyria constitutes a heterogenous collection of neuroimaging features, neuropathological findings, and clinical associations, and is due to multiple underlying etiologies. In the last few years, some glutamate and sodium channelopathies have been associated with cortical brain malformations such as polymicrogyria. The potassium calcium-activated channel subfamily M alpha 1 (KCNMA1) gene encodes each of the four alpha-subunits that make up the large conductance calcium and voltage-activated potassium channel "Big K+". KCNMA1-related channelopathies are associated with various neurological abnormalities, including epilepsy, ataxia, paroxysmal dyskinesias, developmental delay and cognitive disorders. CASE REPORT: We report the observation of a patient who presented since the age of two months with drug-resistant epilepsy with severe developmental delay initially related to bilateral asymmetric frontal polymicrogyria. Later, exome sequencing revealed a de novo heterozygous variation in the KCNMA1 gene (c.112delG) considered pathogenic. CONCLUSION: This first case of polymicrogyria associated with KCNMA1-related channelopathy may expand the phenotypic spectrum of KCNMA1-related channelopathies and enrich the recently identified group of developmental channelopathies with polymicrogyria.


Assuntos
Canalopatias/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Polimicrogiria/genética , Canalopatias/complicações , Deficiências do Desenvolvimento/etiologia , Epilepsia Resistente a Medicamentos/etiologia , Humanos , Lactente , Polimicrogiria/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...